- GENERAL PROBLEMS OF HEAT EXCHANGE
IN A MOVING LAYER

V. I. Gubinskii UDC 536.24:532.546

An approximate analytical solution is obtained for the problem of steady heat exchange in a
moving layer in the presence of heat and mass sources in the gas stream. A numerical-
analytical method is developed for the solution of the problem of nonsteady heat exchange of
a layer by convection or radiation with the simultaneous action of different disturbingfactors.

Heat exchange in a layer moving with variable velocity represents a general case of layer heat ex-
change, since a stationary layer can be considered as moving with zero velocity. A method of solving
problems of heat exchange in a stationary layer based on the use of a general solution of the equation of
thermal conduction was examined in [1]. This method is applied below to problems of heat exchange in a
moving layer formulated in general form.

First let us examine the steady mode of heat exchange between a layer of massive bodies of the
simplest shape and an opposing gas stream in which sources of mass and heat act.

The effect of mass sources is expressed in variation in the flow rate of gas along the length of the
layer. The flow rate of the gas and the power of the heat sources are given in the form of arbitrary func-
tions of the time the body stays in the oven or of its coordinate relative to the entrance to the oven. The
heat losses are proportional to the average temperature of the gas in the oven. We neglect heat conduction
along the layer.

The initial system of equations and the boundary conditions have the following form:

equation of heat conduction
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The general solution of Eq. (1) with the condition that the gas temperature is some function of the
time is well known [2, 3]

]
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t:T——EA(Hn, r) exp (— p2Fo) l:l + (—«exp (u20) dm]
n==1 "6
- E A (Y, 1, )exp(— ;ﬁ, Fo). (5)
n=l
Since in the majority of cases the processes of heating of the substance in the moving layer are completed
when Fo > 0.5, in the solution of (5) we confine ourselves to the first terms of the sums. An expression
for the average-mass temperature of the body follows from (5):
Fo

[ = T -— B (w) exp{— p*Fo) [1 e (} Jo EXP (W2o) dco}
+ B’ (u, 1) exp (— wFo). 6)

The root u of the characteristic equation and the coefficients A, A', B, and B' are known from the solution
of the equation of thermal conduction for a single body with boundary conditions of the third kind and are
presented in the literature [2].

Let us differentiate (6) with respect to Fo:

Fo

dt dT dT
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0
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A
Using (6) we transform Eq. (7) to the form
@ 4T - dT
GFo ~dFo M0 BgEs ®)

Based on the fact that Eq. (8) must satisfy the condition (2), we arrive at a differential equation rel-
ative to the gas temperature

dar

-~ M(Fo)T =N (Fo), 9
7o (Fo) (Fo) 9)
for which the general integral has the form
Iio Fo l’-;o
T = exp(— | MdFo)[1 = { N exp | MdFo) dFo), (10)
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The average-mass temperature of the body is determined from the condition (2) while the temperature at
any point through the thickness can be found from the following equation, obtained through substitution
from (6) into (5):
tr, Fo)=T + A4 (t—T)— AB—A'B exp (—u*Fo). 11
B B
If t° = const in the condition (4) then according to [2] we have A' = At?, B' = Bt’, and the last term in (11)
is reduced to zero.

Let us examine a particular case of the solution (10) which is characteristic for continuous ovens
with multizone heating, in which the sources of mass and heat are concentrated at the junctions of the
zones and can be expressed by step functions:
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" here Tip = (teal—t %) /A2—t2), vi = (VgiCx/Vseg), and ¢ is the unit function [4].
in s//tg™ts) M gi%g 8

In accordance with the property of the unit function

0 SR L v:0 (Fo— Fol), dQ Lyl — 1) 8 (Fo—Fo), (13)

6 is the Dirac delta function.

After substitution of (12) and (13) into (10) and integration, the following recurrent equation is obtained
for the gas temperature at the end of the n-th zone of the oven counted from the loading site of the materials:

Tn = Tn.-l exp (——Sn) + En' (14)
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Finally, taking v = const, Q =0, and ' = 0 in (10) we obtain a solution for steady counterflow without
sources of heat and mass in the gas:

T=-"_ 4 exp v—1 pLZFo) for y£ 1,
v—1 1=y "\1—y—B
(15)

for y=1.

7= MFo
' B

The results of calculations from Eq. (15) and from certain exact solutions [5, 6] almost coincide for Fo
=0.2.

Let us consider a general case of nonsteady layer heat exchange. Suppose there is an infinitely long
layer of massive bodies of the simplest shape (Fig. 1) moving with a variable velocity v. We will neglect
heat conduction along the layer. At the starting time of the process the oven is located with the layer at
the entrance. It is valid to assume that the layer remains stationary while the oven moves along it in the
opposite direction with the given velocity v. The heating of the substance will take place in the section
Stapgd < St < Stgiy of the layer which is in the oven at a given time. The heating is completed in the segment
0 < Bt < Stend and has not yet started in the region 8t > Stg¢y. The time during which the oven covers a
distance equal to Stgyg will be called the heating delay time at a given section of the layer (7d). If the total
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Fig. 1. Model of heating of a moving layer of solid bodies in a
pass-through oven.

duration of the process is 7' then the heating time of the substance at a given section of the layer is equal
torT =7'—74. Within the oven the gas moves along the layer with velocity w. The gas velocity relative to
the layer is u = v + w (the upper sign for counterflow and the lower sign for direct flow). In practice w

> v and therefore it can be agssumed that u  w and the flow rate of the gas is determined by its absolute
velocity. The rate of movement of the substance and the temperature of the substance and gas at the oven
entrance are arbitrarily varied with time. Sources of mass and heat act in the gas. The flow rate of the
gas and the power of the heat sources are given in general form as a function of the time and the coordinate
along the length of the layer. The initial temperature of the substance is some function of the coordinates
through the thickness of the body and along the length of the layer. The heat losses are a fixed function of
the gas temperature.

The mathematical formulation of the problem comes down to the following system of equations and
boundary conditions:

at(r, Fo, St) :azt(r, Fo, St) LY ot(r, Fo, St)

9Fo 7 (16)
7 aT T i M ’ ’
t(1, Fo, SH — T (Fo, St) = z(Fo’, St)m-—r% (T)—Q (Fo', St); (17)
O BT —iq, Fo, St | —o; (18)
it r=1 or Fe=d
Fo=0, t =1°(r, St)
for direct flow St =Stg, T =Ty, (Fo') | (19)
for counterflow St==St, gy T =T, (Fo)
Fo’
Stg, = | v(Fo')dFo’, Stepg=0, if Stg, <L,
8 . (20)

Stend: Stga — Lov if St sta > La

The dimensionless values in Eqs. (16)-(20) are: t =tg/teal; T =tg/teal; Fo' = at'/R% Fo = Fo'
—atq/R?* Bi=aR/A\; St= af/VmaxCgi z = Vg(Fo', 8t)/Vimax; v(Fo') =dSt/dFo'; Ly =a act/vmaxcg;
Q' =q'(Fo', St)/atecal. The general solution of Eq. (16) has the form [1]

o

{(r, Fo, St) =T (Fo, St) — DIAC, 1) Gy —A' (¢ pny 1) xp (—prFo),

n=1

@1)
FOaT .
Gy =T O, St) -+ [ = exp (wiw) do;
0
at the surface of the body
t(1, Fo, St) =T (Fo, St) — D IA(L, 1) G, —A (1; 1, )] exp(—uzFo). 22)
n=1

By requiring that the latter equation satisfy the condition (17) we obtain an equation for the gas tem-
perature in the moving section of heating:

or

0S5t

2

=Q — Ty — E (AL, py) G, — A (L, @, )} exp (— Hi Fo). 23)
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The analytical solution of Eq. (23) even for a stationary layer and z = const [1] is unsuitable for cal-
culations. It is solved most conveniently using an electronic computer.

Let us convert to finite differences with respect to time (AFo) and the length of the layer (ASt):

Foj = kAFo, St,, =mASt, Fo,,, , = Fo,— “llg;_l_
where £ =0,1,2,...; m=0, 1, 2 ...;
k
Ststa, k
Steta, =2v,.AFo, Mg, 0 =2

=)

Mend,, =0 for Steta, » <Ly

L
Mend, b = Msta, 1 — ASot for: Sty > L,.
As a result of the finite-difference approximation of Eqs. (17) and (21) we obtain calculating equations for
the temperatures of the gas and the substance along the length of the interval mend, k < m < mgta k of the
layer:

ENmst, 2 = Tria, 61— EA (r, w T (0, St . )exp(— yﬁFom,y ")

n=1
=+ h‘m+1, k-1, n] = Z A (r’ Mps t21+1 ) exp (— H: FOmﬂnrl, k); (24)
n=i

T _ Tm, Wm, k an ASt [tsur, m4lr BT % (Tm, h) + Q;n k]
m+l, B Zm, N ';” ASt ! (25)

2
where hm+1, Ry n hm+1, k-1, n €XP (—_ ILHAFO) - Tm+1, |3

_Tm+1, b
for FOm+l, r=0 hm+1, Ry m = 0.

Here and later the indices correspond to counterflow. For direct flow the index m + 1 is changed to m—1..
T (0, Sty +1), the gas temperature at the moment of loading the m + 1-th element of the layer into the oven,
is determined from (25). If one takes Fop + 1, k =0 then T+, k = T(0, Sty ), hence it follows that

Tm, kzm; Rk -+ ASt ItOSUI, m+41 £ (Tm, k) T Qﬂl il
Zy, 1 — ASE

m.

T(0, §t,,,,) = (26)
In the case of direct flow T (0, Stm +4) = Tin, k for all elements of the layer. The average-mass tempera-
ture of the body can be found from Eq. (24) by replacing the coefficients A and A’ in it by B and B', respec-
tively. In the ealculation of the heating of preparation in a continuous counterflow oven with multizone
heating (see Fig. 1) one must take in Eqs. (24)-(26)

. »
N 1
zm, = L zi, r® (Stm ‘—Ststa, RO Li);
=0 . !
» Tin B ‘_'Tm ® 21
= et RNV, ¢ (St, — Ststa, 5 -+ L;
G = 2_1‘ , 110 (St —Steta, &+ L)
— @ (St,, —ASt —Stgy, »+ Ll
Afr, p) = 230cos () gy B
T, sinpgeoss, "
4
A, (f, P'nv t?n—}-l):-_er_)“ \ zo (r)m;l Cos (}1”1’) df;
!““n -L sin y‘n COS.U'n. 7] .
0
1
. .
B = 2sin” p,, , B = _.«m'-——f £ (7)1 008 (W,r) dr-
My (“‘n - sin My, COS Mn) My -+ sifp, COS |y,

0
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Equations (24)-(26) remain unchanged in application to a stationary layer. Since the oven must be filled
with the substance from the very start of the heating, for all the elements of the stationary layer within the
oven 7q, m+ = 0 and Fop 44, k = Fog = kAFo, The numerical—analytical method presented for the solution
of the general problem of nonsteady-layer heat exchange can be applied to the heating of a layer by radia-
tion. For this we introduce a correction for the radiant heat flux in Eqs. (17) and (18):

2(Fo', St) -gf—tsf(l, Fo, St) — T’ (Fo, St)—»' (T) - Q' (Fo’, St); a7
]

o = Bi[T’ (Fo, St)—¢(l, Fo, St)], 18y
or|._y

where

%]
T’ (Fo, St) =#(1, Fo, St)%-%%l[Té‘ (Fo, St)— (1, Fo, St)],

ts 27

¢

=

L T= 84— const£0.
cal l‘cal

The value of o is chosen arbitrarily. In the calculating equation (24) the values denoted by the letter T are
changed respectively to T'. The gas temperature is determined from Eq. (17'), which after the finite-
difference approximation takes the form

ASt 513
met, 5T A Thtt, b =T, 1
ASt Gts ’ ! |
— [‘___(:ﬂ lAsur mtl, & % (Tm, k) __Qm' B (28)
Zm, & &

On the basis of the equations obtained an algol-program was developed and calculations were conducted on
a Minsk-22 computer for the temperature fields of the gas and substance during nonsteady heat exchange
by convection and radiation in application to a continuous oven.

NOTATION

ty, tg: temperature of substance and gas; td, tog: same at the start of heating; t: average mass
temperature of body; tea(: calorimetric temperature of fuel combustion; v =0, 1, 2 for a plate, cylinder,
and sphere, respectively; R: thickness of bodies comprising the layer; y: coordinate of a point through
the thickness of the body; 7: heating time of material; «: thermal diffusivity; A: thermal conductivity;
p: density; o: heat exchange coefficient; o: radiation coefficient; gt specific heat capacity of gas; Vg:
current flow rate of gas; Vipax: flow rate of gas at maximum thermal power of oven; Vgeg: water equiv-
alent of substance; wn: coefficient of heat transfer from gas to surrounding medium: w': function of heat
loss to surrounding medium; f13: surface of oven lining per unit mass of substance; q: power of heat
source; q': power of heat source per unit heating surface; p: number of zones of oven; i: ordinal number
of zone; Foj: dimensionless time of movement of body from oven entrance to end of i~th zone; Tin: gas
temperature at oven entrance; Vgi: flow rate of gas through burners of i-th zone; Stgts, Stend: current
coordinates of start and end of oven along length of layer; L;: dimensionless length of oven; f: heating
surface from entrance of layer to any cross section; JSact! area of active oven hearth; k: ordinal number
of time interval; m: ordinal number of element along length of layer; ¢: unit function; tgyy: surface
temperature of body; 74, m+1: delay time for heating of m + 1-th element of layer,
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